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1. Introduction

One usually comes across packings in the supermarket in the form of pyramidal stacked oranges
or translucent cylinders filled with candies. While many properties of sphere packings are known
[1], the packing properties of Meissner tetrahedra are jet unknown.
Meissner tetrahedra are convex bodies of constant width, similar to spheres. This means that if
clamped between two parallel planes touching the surface, the distance between them is always
constant and known as diameter.[2]
Other than spheres Meissner tetrahedra have an orientation in three dimensional space that
stems from their construction [3]. This means that besides the diameter and location of the
center, three Euler angles are needed to fully describe the Meissner tetrahedra in three dimen-
sional space [4].
X-ray tomography is a non-destructive method for visualising the internal structure of an object
[5].
In this thesis X-ray tomography is used to study the packing properties of Meissner tetrahedra
within a cylindrical container from tomographic data. Therefore an algorithm is developed to
obtain the packing density, the position and the orientation of the individual Meissner tetrahe-
dra within a lose packing.
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2. Theory

2.1 Construction of Meissner tetrahedra

There are two non congruent Meissner tetrahedra, which are both based on a regular tetrahedron
of side length s as shown in Fig.2.1a [6].
The regular tetrahedron is first transformed in a Reuleaux tetrahedron. This is done by placing
one sphere with its center on each of the four vertices of the regular tetrahedron. The radius of
these spheres must be equal to the side length of the regular tetrahedron. This condition forces
the spheres to intersect, as shown in Fig.2.1b. The intersection of all of the four spheres is called
Reuleaux tetrahedron. Fig.2.1c shows the Reuleaux tetrahedron from top view and Fig.2.1d
from side view. A Reuleaux tetrahedron is yet not a solid of constant width, the distance
between the midpoints of two opposite edges,

(√
3 −

√
2/2

)
s ≈ 1.0249s is slightly larger than

the distance s between a vertex and a spherical face or two vertices.[3], [6]–[8]
The Reuleaux tetrahedron can be transformed in a Meissner tetrahedron by replacing three of
the six sharp edges with three round edges, which can be done in two ways: Either the three
round edges meet in one vertex of the Reuleaux tetrahedron creating Meissner tetrahedron
MV or the three round edges enclose one face of the Reuleaux tetrahedron creating Meissner
tetrahedron MF. Fig.2.2c shows MV from top view and Fig.2.2d shows MV from side view.
Fig.2.2g shows MF from bottom view and Fig.2.2h shows MF from side view. The round edges
are produced by intersecting a regular tetrahedron placed with its edge on the edge of the
underlying tetrahedron of the Reuleaux tetrahedron as shown in Fig.2.2a and Fig.2.2e. The
circular edge of the Reuleaux tetrahedron creates an intersections with the straight edges of
the regular tetrahedron and is removed. The resulting circular segment is rotated around the
straight edge of the tetrahedron creating a spindle torus as shown in Fig.2.2b and Fig.2.2f. The
rounded edges correct the small mismatch in diameter resulting in a Meissner tetrahedron with
the property of being of constant width s, which is the edge length of the tetrahedron from the

s

(a) Regular tetrahedron
(top view)

(b) Intersection of
spheres (top view)

(c) Reuleaux tetrahe-
dron (top view)

(d) Reuleaux tetrahe-
dron (side view)

Figure 2.1: Construction of a Reuleaux tetrahedron
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(a) Cuts for MV (b) Spindles of MV (c) MV (top view) (d) MV (side view)

(e) Cuts for MF (f) Spindles of MF (g) MF (bottom view) (h) MF (side view)

Figure 2.2: Construction of the two Meissner tetrahedra MV and MF

beginning.[3], [6]–[8]

2.2 Properties of Meissner tetrahedra

MV and MF have identical volume and surface area. They consist both of four vertices, four
spherical surfaces, three toroidal surfaces or rather round edges and three circular arcs as sharp
edges in both cases. One of the four vertices is unique. In case of MV there is one vertex
where the three spindle tori meet and in case of MF there is one vertex where three circular
arcs meet. This vertex gives the Meissner tetrahedra an orientation in three dimensional space
and is therefore called directing vertex. The other vertices are called ordinary vertices. Around
the axis through the centroid and the directing vertex, the Meissner tetrahedra have a threefold
rotational symmetry. The centroid of a Meissner tetrahedron characterizes its position in three
dimensional space. The orientation of a Meissner tetrahedron can be characterized by three
Euler angles. Two Euler angles characterize the direction in which the directing vertex points
and the third Euler angle characterize the rotation around the axis through the centroid and
the directing vertex.[3], [6]

2.3 Packing density and tomography

The packing density of a regular packing is defined as the volume fraction of a unit cell [9]. The
densest regular sphere packings have a packing density of 0.74 [10], Reuleaux tetrahedra have
a value of 0.79 [11] and regular tetrahedra 0.85 [12].
The packing density of a random packing can be calculated locally as fraction of the particle
volume to the volume of its Voronoi cell or globally as fraction of the total particle volume in
some space Voccupied to the volume of the space itself Vtotal [13]–[15]. For example is the packing
density of random monodisperse sphere packings found to be in between 0.562 (lose packings)
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and 0.64 (dense packings) [16]. The densest packing of random packings of tetrahedral dice is
0.76 [17].
With X-ray tomography, two dimensional shadow projects of an three dimensional object under
different angles are obtained and converted into a three dimensional reconstruction of this object.
This reconstruction represents the object on an equally spaced three dimensional lattice or 3D
array. One cube of this three dimensional lattice is called voxel and contains a grey-scale value
which is equal to the local X-ray absorption. The number of voxels per volume depends on the
resolution of the computer tomographic scan.[5], [18], [19]
In a computer tomographic scan the number of voxels which approximate the real shape of an
object is proportional to the volume of that object [20]. Therefore, the global packing density Φ
can be calculated as the ratio of the number of occupied voxels or rather object voxels in some
space and the total number of voxels of this space, Eq.(2.1).

Φ = Voccupied
Vtotal

−→ Noccupied
Ntotal

(2.1)
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3. Code development

In the following section, the method how to obtain the packing density, the position and the
orientation of the Meissner tetrahedra within a packing from tomographic data will be explained.
The method is developed for a packing within a cylindrical container. The longitudinal direction
of this cylinder or packing is defined as z-axis. Planes that are perpendicular to the z-axis are
called layers or slices.

3.1 Packing density

A cylindrical region of interest Fig.3.1c is first defined with a total volume Vtotal containing
Ntotal voxels. This is done by placing a circular mask as shown in Fig.3.1b on every grayscale
slice of the three dimensional array along the z-axis like in Fig.3.1a. The radius is chosen such
that the circular shape of the container wall is removed. The height of the region of interest is
chosen so that the bottom of the container is removed.
To access the number of occupied voxels Noccupied, it must be distinguished between voxels that
belong to Meissner tetrahedra or to surrounding air. This is done by using grey-value based
image segmentation. Voxels that belong to Meissner tetrahedra have a higher absorbance and
appear brighter on a grayscale image than voxels that belong to surrounding air. Therefore
every pixel that is brighter than a certain threshold belongs to a Meissner tetrahedron and is
set to one. Every pixel darker than that threshold belongs to surrounding air and is set to zero.
Instead of generating a different threshold for every layer of the 3D array, one global threshold is
generated by OTSU’s method for the entire volume. This way the result is more robust towards
image noise. OTSU’s method assumes a bimodal grey-value distribution and finds a threshold
that divides it into two classes.[21]
The result is a binary image in which occupied voxels have a value of one and background voxels
a value of zero. Fig.3.1d shows a binary slice of the packing. Occupied or rather object voxels
appear white, while unoccupied voxels that belong to air appear black.
Instead of directly calculating the global packing density Φ, a layer based packing density ϕi

which depends on the height is first calculated. The global packing density Φ is then calculated
as the average of the layer based packing densities, as shown in Eq.(3.1).

Φ = Noccupied
Ntotal

=
∑

Ni,occupied
Ntotal

=

∑
Ni,occupied
Ni,total
Ntotal

Ni,total

=
∑

ϕi

Nslice
(3.1)

3.2 Position

To access the position of the individual objects, region based segmentation is used. To do so, the
container wall and bottom is removed by applying a circular mask on every slice of grey scale
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(a) Greyscale image (b) Mask (c) Masked image (d) Binarized image

Figure 3.1: From grayscale image to binary image

array before using OTSU’s method for binarization as in part 3.1. Fig.3.2a shows a masked
grey scale slice.
The mask is need because the container wall and bottom has a similar X-ray absorption as
the 3D-printed Meissner tetrahedra leading to a similar grey value. Therefore, OTSU’s method
can’t distinguish between voxels that belong to the contain walls or bottom and voxels that
belong to Meissner tetrahedra.
The circular mask removes also parts of the Meissner tetrahedra. Those partly cut Meissner
tetrahedra are filtered out once their position is known.
Sometimes small voids appear inside the Meissner tetrahedra. This can happen due to image
noise or bad pixels on the detector. Those voids are removed by applying the connected-
components-3d algorithm on the inverted image. The algorithm labels voxels that belong to
the same cluster of voxels with the same value [22]. Since the air around the objects forms one
big cluster, all smaller clusters must belong to voids inside the objects and can therefore be
removed [15]. Fig.3.2b shows the binarized image of the previous slice.
To separate the individual Meissner tetrahedra, the Euclidean Distance Transform of the binary
volume is calculated. Object voxels are labeled according to their Euclidean Distance to the
nearest background voxel [23]. Fig.3.2c shows the Euclidean Distance transform of the same
slice. A brighter color corresponds to a higher value and therefore a greater distance to the
background.
The Euclidean Distance Transform is binarized using a manually chosen threshold so that only
the voxels close to the centroids of the Meissner tetrahedra remain, as shown in Fig.3.2d. If the
threshold is larger than the highest value of the Euclidean Distance Transform, all objects are
fully eroded. If chosen too small, the objects are not fully separated.[15]
By using the connected-components-3d algorithm voxels that belong to same core are labeled
with the same value. Fig.3.2e shows the labeled cores. Different colors correspond to different
labels and therefore different Meissner tetrahedra. At this point, the label with the highest
value is equal to the number of Meissner tetrahedra contained in the packing [22].
By applying the watershed-ift algorithm, the boundaries between the individual Meissner tetra-
hedra are found [23]. Fig.3.2f shows the separated Meissner tetrahedra that appeared as one
white structure in 3.2b.
The position of the Meissner tetrahedra is defined as the centroid of each Meissner tetrahedron
and is described by its three components Xj , Yj and Zj . Every component of the centroid is
defined as the average value of all x-, y- and z-components of voxels belonging to one Meissner
tetrahedron, Eq.(3.2).[24]

Xj =
∑

xj,i

N
, Yj =

∑
yj,i

N
, Zj =

∑
zj,i

N
(3.2)
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(a) Masked grascale image (b) Binary image (c) Distance map

(d) Separated cores (e) Labeled cores (f) 3D Watershed

Figure 3.2: Separation of Meissner tetrahedra

The centroid is not equal to the center of the tetrahedron the Meissner tetrahedra are based
on. The small shift due to the shape of the surface of the Meissner tetrahedra is neglected.
The centroids are used as filter criterion to remove Meissner tetrahedra that are touching the
wall or bottom of the container and might have been cut by the circular mask, when removing
the container wall and bottom. Meissner tetrahedra exceeding the radius of the region of interest
as shown in Fig.3.2f or the depth of the region of interest are removed.[15]

3.3 Orientation

To obtain the orientation of the Meissner tetrahedra within the region of interest the vertices
of the Meissner tetrahedron need to be found. Vertices of a regular object like a tetrahedron
have the property that the distance between the centroid and a vertex is maximal [25]. This
property is used to find the vertices of the Meissner tetrahedra.
To isolate the vertices, first a sphere is placed on the centroid of each Meissner tetrahedra.
The radius of the sphere has a value in between the radius of the inscribed and circumscribed
sphere of the tetrahedron the Meissner body is based on. This sphere is then subtracted from
the Meissner tetrahedron by setting all object voxels to zero whose distance to the centroid is
smaller than the radius of the sphere, which separates the groups of voxels close to the vertices
of the Meissner tetrahedra. Due to image noise, these voxel groups must be filtered according
to their size to ensure that only the four largest remain.
Within every voxel group, the voxel Vi with the largest distance to the centroid C is selected as
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(a) Directing vertex (b) Intersection (c) Ordinary vertex (d) Intersection

Figure 3.3: Difference between a directing vertex and an ordinary vertex

vertex, Eq.(3.3).
max

i
|
−−→
CVi| (3.3)

Now that the vertices are known it must be differentiated between a directing vertex and
an ordinary vertex. For each vertex a intersecting plane is constructed with a normal vector
pointing from the vertex to the centroid, parallel to −−→

CVi . The area contained in this intersecting
plane depends on the type of vertex.
For Meissner tetrahedron MV the plane with a normal vector pointing from a directing vertex
to the centroid contains a smaller area than a plane with a normal vector pointing from an
ordinary vertex. For Meissner tetrahedron MF would it be the other way around.
Fig.3.3 shows the intersection area for MV from a directing vertex Fig.3.3b and from an ordinary
vertex Fig.3.3d in the same distance from the vertex. The three rounded edges in case of a
directing vertex make the intersection area smaller. The difference between the two areas can
be calculated according to Eq.(3.4).

ϵ =
∣∣∣∣∣Aordinary − Adirecting

Aordinary

∣∣∣∣∣ (3.4)

Fig.3.4 shows the difference in percent between the intersection plane from a directing and an
ordinary vertex along the height hp of Meissner tetrahedron MV. The difference increases from
the basis towards the vertex but is in general rather small, ranging from 0 % to 3 %.
In order to make the detection of the directing vertex as reliable as possible, several planes
above 0.6 · hp are used. The directing vertex of MV is the one vertex creating the most planes
with the smallest intersection areas.
Once all vertices are known and classified the orientation can be calculated. First the vector−−→
CVD pointing from the centroid to the directing vertex is defined. The azimutahl angel φ is
then defined as the angle between the projection of −−→

CVD in the x-y-plane and the x-axis ranging
from zero to 2π. The polar angel θ is defined as the angle between −−→

CVD and the z-axis ranging
from zero to π.
Knowing the azimuthal φ and polar θ angle the Meissner tetrahedron can be rotated into an
upright position where the directing vertex is on the positive side of z-axis. The rotation
angle γ characterizes the rotation of the Meissner tetrahedron around −−→

CVD. Since the Meissner
tetrahedron is now in an upright position the ordinary vertices are projected into the x-y-plane.
The rotation angle γ is defined as the angle between the projected vertex in the first or fourth
quadrant and the y-axis. Meissner tetrahedra have a threefold rotational symmetry [3] which
is why the rotation angel γ ranges from 0 to 2π/3.
Fig.3.5 summarizes the described algorithm. Once the Meissner tetrahedra are isolated from
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Figure 3.4: Area difference between a directing and an ordinary vertex along the height

(a) Isolated MV (b) Centroid (c) Subtraction (d) Vertices

Figure 3.5: Key steps of the algorithm

each other their centroid is calculated. Fig.3.5a shows an isolated Meissner tetrahedron. The
centroid is shown in Fig.3.5b as a black dot. At the centroid a sphere is placed and subtracted
from the Meissner tetrahedra, revealing the vertex candidates shown in Fig.3.5c. Based on
the vertex candidates and the area difference the vertices are determined. Fig.3.5d shows the
directing vertex as a yellow dot and the three ordinary vertices as black dots for the angle
calculation.
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4. Experimental setup

In this section the manufacturing process of the Meissner tetrahedra and the image acquisition
will be explained.

4.1 Preparing the packings

Since booth Meissner tetrahedra have equal volume and surface area we randomly choose MV,
three round edges combined in one vertex for investigation.[3]
The Meissner tetrahedra were produced by a stereo lithography based 3D-printer from resin.
The needed support structure for 3D-printing creates small marks on the surface which were
ground off. Afterwards the yet soft Meissner tetrahedra are cured under UV light for harden-
ing. The hardening process causes warping giving the Meissner tetrahedra a slight asymmetry,
meaning that the distance between the vertices varies.
A diameter s of 15 mm was chosen to ensures a noticeable difference between a sharp and round
edge. The radius of curvature at a midpoint of a round edge is 2 mm. The Meissner tetrahedra
have a density of 1.2 g/cm3.
To determine the packing density a cylindrical PMMA container with an inner diameter D of
84 mm was filled with 150 Meissner tetrahedra creating a lose monodisperse packing. The ratio
of the container diameter D and the particle diameter s is D/s = 5.6.
To determine the location and orientation a second smaller packing counting 60 Meissner in a
cylindrical container out of cardboard with a diameter D of 65 mm was used. This time the
ration D/s is 4.3. Fig.4.1 shows the prepared packings.

(a) Packing of 150
Meissner tetrahedra
(side view)

(b) Packing of 150
Meissner tetrahedra
(top view)

(c) Packing of 60 Meiss-
ner tetrahedra (top
view)

Figure 4.1: Experimental setup
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4.2 Image acquisition

For the large system with 150 Meissner tetrahedra the acceleration voltage was set to 150 kV and
the current to 200 µA. The exposure time was set to 250 ms. The resolution of the reconstructed
volume is 341.78 µm/voxel. The reconstructed volume contains 240 × 240 × 100 voxels.
For the small system with 60 Meissner tetrahedra the acceleration voltage was set to 60 kV and
a the current to 500 µA. The exposure time was set again to 250 ms. The resolution of the
reconstructed volume is 157.94 µm/voxel. The reconstructed volume contains 348 × 348 × 480
voxels.
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5. Results and discussion

5.1 Packing density

Fig.5.1 shows the dependency of the layer based or local packing density ϕ on the longitudinal
position z as well as the global packing density Φ. Because of gravity acting on the packing,
Meissner tetrahedra touching the base of the container are forced in an up right position with
a vertex pointing upwards and a spherical face touching the bottom. The ordered Meissner
tetrahedra of the packing create a higher packing density close to the bottom and a periodic
trend of the packing density. With increasing height the effect of the bottom vanishes, which
can be seen in the decreasing amplitude of the packing density. The global packing density Φ is
equal to 0.68 and therefore in between the packing density of random loose spheres (0.56) and
random dense tetrahedra (0.76) [16], [17].

5.2 Number of objects and volumes

The algorithm is able to detected all 60 Meissner tetrahedra of the packing. The region of
interest contains 13 Meissner tetrahedra. The standard deviation of their volume is 0.5 %
compared to the average volume of 1.376 cm3. Fig.5.2 shows the volume of each Meissner
tetrahedra as black dots and the average value as red line.
Since there is no larger volume, for example twice the volume of one Meissner tetrahedra and
the number of found Meissner tetrahedra is correct the separation must be successful.[15]

5.3 Position and orientation

Fig.5.3 shows the z-coordinates and Fig.5.4 show the x- and y- coordinates of the Meissner
tetrahedra within the region of interest. The black circle in the background of Fig.5.4 repre-
sents the diameter the cylindrical container, the black dashed circle the diameter of the region
of interest.
The algorithm finds 52 vertices. This is correct because each of the 13 Meissner tetrahedra has
4 vertices. The average distance between the vertices of one Meissner tetrahedron and its stan-
dard deviation are shown in Fig.5.5. The Meissner tetrahedra are based on regular tetrahedra
of the same size with equally long sides. Therefore the average distance between the vertices
should be equal. This can be seen in Fig.5.5. The bars have a similar height of either 14.4 mm
or 14.5 mm. The largest standard deviation of the length between the vertices is 0.357 mm for
the Meissner tetrahedron with the ID 2 which is 2.5 % of the average edge length of 14.4 mm.
The obtained angles are shown in Fig.5.6, Fig.5.7 and Fig.5.8. All three angles have a rather
random distribution. In Fig.5.8 there is one outlier. The Meissner tetrahedron with ID 9 has
an angle of γ = 2.2 which is larger than 2π/3 ≈ 2.1 and should therefore not be possible.
One explanation for this are the unequal distances between the vertices, creating a asymmetric
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Figure 5.3: z-coordinate of the centroid of each Meissner tetrahedron
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Figure 5.4: x- and y-coordinate of the centroid of each Meissner tetrahedron
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Figure 5.9: Effect of an asymmetric basis

projection of the basis in x-y-plane. Fig.5.9 shows a asymmetric basis represented by the red
triangle. The dashed red triangle shows the asymmetric triangle if it was symmetric.
The algorithm first looks for a vertex in the first quadrant. If there is no vertex, there must be a
vertex in the fourth quadrant at an angle smaller than 2π/3 because of the threefold rotational
symmetry of an equilateral triangle.
In case of the symmetric triangle this works. The vertex of the dashed symmetric triangle
lies within the fourth quadrant at an angle smaller than 2π/3. In case of the asymmetric red
triangle the algorithm finds a vertex in the fourth quadrant but at an angle larger than 2π/3.
It is possible to create a CAD model of the investigated packing in order to see weather the
obtained positions and angles are plausible. There should not be for example a vertex pene-
trating a face of another Meissner tetrahedron. Such a configuration would indicate a wrong
description of the position or orientation. Fig.5.10 shows the CAD clone as well as the CT
scan for comparison. The yellow Meissner tetrahedra in Fig5.10a indicate the region of interest.
From that comparison it becomes clear that the proposed method seems to work. The Meissner
tetrahedra are tangential to each other and the orientation of the round edges match.

(a) CT scan (top view) (b) CAD clone (top view)

Figure 5.10: Consistency check
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6. Conclusion and outlook

This thesis has shown that it is possible to obtain the packing density, the positions and the
orientations of Meissner tetrahedra within a random loose packing from tomographic data.
The packing density was calculated for a system with a ratio of D/s of 5.6 after the Meissner
tetrahedra have been poured in the container and was found to be 0.68, Fig5.1. In order to
confirm the packing density a larger container or a container with smaller Meissner tetrahedra
must be invested. Neudecker et al. have used a ratio of D/s of 15 [26]. Beside of that
the experiment should be repeated several times with a fixed preparation protocol to create
comparable packings.
The number of Meissner tetrahedra which can be detected is limited by the need of a region
of interest that separates the container wall form the Meissner tetrahedra. This reduces the
number of Meissner tetrahedra from 60 to 13. In order to be able to detect Meissner tetrahedra
touching the wall a container with a much lower absorption than the Meissner tetrahedra can
be used. In this case the wall could be removed by OTSU’s method.
The precision of the orientation is limited to the resolution of tomographic data. Scans with
higher resolution would help finding the directing vertex because the curvature of the spindle
surface would be resolved to a higher degree.
Since the shape of the surface of a Meissner tetrahedron is not symmetric like the shape of the
surface of a Reuleaux tetrahedron or regular tetrahedron the calculated centroid is not equal
to the actual center of the tetrahedron the Meissner tetrahedron is based on. This offset was
neglected. The real center can be obtained by first calculating the centroid as it is done right
know to find the vertices. Since the vertices are the same vertices as of the tetrahedron the
Meissner tetrahedron is based on the center is the average of the vertex coordinates.
When calculating the vertices it sometimes happens that there are several voxels with the same
maximal distance to the centroid. In such a case the first voxel having the maximal distance
from the centroid is chosen. In order to come closer to the real vertex it would be better
to average the position among the maximal distance voxels. This could reduce the standard
deviation of the distance between the vertices in Fig.5.5.
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